Шпильки резьбовые. Соединения шпильками. Конструкции шпилек

Шпильки

На рис. 117 приведены основные конструкции резьбовых шпилек. Конструкции жесткой шпильки (рис. 117, I) со стержнем диаметром, равным диаметру резьбы, применяются только для коротких шпилек. К недостаткам такой шпильки можно отнести: жесткость, невыгодность по массе, затруднительность применения высокопроизводительных способов накатывания, фрезерования и шлифования резьбы (для точных резьб) и т. д. Часто применяют облегченные шпильки (рис. 117, II, III) с уменьшенным диаметром стержня, равным внутреннему диаметру резьбы или меньшим его (в среднем диаметр стержня делают равным 0,6—0,8 наружного диаметра резьбы). Их преимущества заключаются в равнопрочности шпильки в нарезной и гладкой частях, податливости, меньшей массе, возможности применения высокопроизводительных способов изготовления резьбы и т. д.

Гладкий поясок (а) у навертного конца шпильки (рис. 117, II), применявшийся в ранних конструкциях облегченных шпилек, сейчас обычно не делают; нарезной конец шпильки переводят плавной галтелью непосредственно в стержень (рис. 117, III). Устранение пояска значительно облегчает изготовление резьбы, которая в данном случае может быть нарезана напроход.

Конструктивные формы шпилек

Посадочный размер шпильки в корпус зависит от материала корпуса (рис. 118, I—IV). На практике в ответственных соединениях глубину ввертывания делают значительно большей, чем указано на рис. 118.

Глубина ввертывания шпилек

При ввертывании в корпуса из хрупких (серого чугуна) или мягких (алюминиевого, магниевого, цинкового сплавов и т. д.) материалов применяют крупные резьбы (минимальный шаг резьбы 1,25—1,5 мм). Для навертного конца шпильки (под гайку) могут быть применены (для шпилек большого диаметра) мелкие резьбы.

Во избежание ошибок при ввертывании шпилек в тех случаях, когда резьбы (и формы) ввертного и навертного концов шпилек одинаковы (рис. 119, I), ввертной конец метят, например, закруглением его торца (рис. 119, II), углублениями (рис. 119, III, IV) и т. д. Лучше всего предупредить возможность ошибок конструктивно: применением на ввертном и на вертном концах резьб различного шага или диаметра.

Формы ввертных концов шпилек

Способ ввертывания шпилек существенно влияет на прочность соединения. Применяют три способа ввертывания шпилек в корпуса:

1) с упором шпильки в торец корпуса (рис. 120, I);

2) с упором конца шпильки в днище (рис. 120, II, III) или в последние витки нарезного отверстия корпуса (рис. 120, IV);

3) с торможением шпильки в отверстии применением посадок с натягом (рис. 120, V или самостопорящейся резьбы (рис. 120, VI).

Способы ввертывания шпилек в корпус

При ввертывании по первому способу в теле шпильки возникают растягивающие напряжения (максимальные у первых витков и уменьшающиеся по направлению к последним виткам). В материале корпуса создаются сжимающие напряжения с примерно таким же законом изменения вдоль оси соединения. При предварительной затяжке такого соединения в шпильке возникают дополнительные напряжения растяжения, а в корпусе — дополнительные напряжения сжатия (от действия притягиваемой детали). При нагружении соединения растягивающей силой в шпильке увеличиваются еще больше напряжения растяжения. Напряжения сжатия в корпусе уменьшаются в результате уменьшения силы прижатия детали и появления растягивающих напряжений.

При ввертывании шпильки по второму способу в теле шпильки возникают сжимающие напряжения (максимальные у конца шпильки и убывающие по направлению к первым виткам). В материале корпуса создаются растягивающие напряжения с примерно таким же законом изменения вдоль оси соединения. При предварительной затяжке такого соединения у первых витков шпильки создаются растягивающие напряжения: сжимающие напряжения у конца шпильки несколько уменьшаются. В материале корпуса под действием притягиваемой детали возникают напряжения сжатия, а напряжения растяжения у днища отверстия ослабевают.

При нагружении соединения рабочей растягивающей силой напряжения растяжения у первых витков шпильки увеличиваются Напряжения сжатия, возникшие в материале корпуса при предварительной затяжке, уменьшаются в результате отхода притягиваемой детали. Зато напряжения растяжения у днища отверстия увеличиваются.

Следовательно, при первом способе ввертывания рабочие напряжения в шпильке больше, а рабочие напряжения в корпусе меньше, чем при втором способе. Таким образом, первый способ более подходит для корпусов из низкопрочных материалов (алюминиевых и магниевых сплавов), второй способ — для корпусов из высокопрочных материалов (стали).

Поскольку шпильки применяют в основном в корпусах из легких сплавов, первый способ более распространен, чем второй.

При третьем способе ввертывания ни в теле шпильки, ни в материале корпуса не возникает существенных дополнительных напряжений. Напряжения сжатия в теле шпильки и растяжения в материале корпуса, обязанные натягу в резьбе, при применяемых величинах натяга незначительны. Благодаря отсутствию дополнительных напряжений этот способ наиболее выгоден по прочности.

В отличие от способа ввертывания шпилек до упора в торец корпуса, точно фиксирующего осевое положение шпильки, способ завертывания по посадке с натягом требует контроля глубины ввертывания для получения заданной высоты выступания навертного конца шпильки над притягиваемой деталью.

Способ установки шпильки на конической резьбе (рис. 120, VI) по прочности равноценен способу крепления за счет натяга, но применим лишь в случаях, когда допустимы некоторые колебания длины свободного конца шпильки.

В тех случаях, когда это позволяет конфигурация корпуса, ввертный конец шпильки дополнительно крепят гайкой (рис. 121, I), что увеличивает прочность соединения. Применяют также способы затяжки конца шпилек гайками (рис. 121, II, III) по типу болтового соединения.

Затяжка шпилек в корпусе гайкой

На рис. 122, I—VIII показаны конструкции шпилек, завертываемых с упором в торец корпуса.

Конструкции шпилек, завертываемых с упором в торец корпуса

Шпильки обычно завертывают «солдатиками», надеваемыми на навертный конец шпильки (рис. 123). При этом возникает опасность скручивания длинных шпилек. Кроме того, «солдатики» вытягивают резьбу и поэтому неприемлемы для точных резьб. В дополнение ко всему этот способ непроизводителен: навертывание и отвертывание «солдатика» занимает много времени. Лучше способ завертывания за лыски (рис. 122, IV) или шестигранник (рис. 122, V, VI), расположенные непосредственно у ввертного конца шпильки. Однако в таком случае приходится предусматривать в притягиваемой детали гнездо под завертный элемент, что усложняет ее механическую обработку.

"Солдатики" для ввертывания шпилек

Наиболее приспособлен для механизированной сборки способ завертывания шпильки за гладкий поясок, примыкающий к навертному (рис. 122, VII) или (лучше) к ввертному концу (рис. 122, VIII). Завертывание производится ключами (или шпильковертами) с эксцентриковыми зажимами или с самозатягивающимися роликами (по типу роликовых колес свободного хода).

В этом случае на шпильках необходимо предусмотреть цилиндрические участки (а), длина которых должна быть согласована с размерами головки шпильковерта.

Способы увеличения сопротивления усталости узла установки шпильки в соединениях, подверженных повышенным циклическим нагрузкам. сводятся к увеличению длины нарезной части шпильки (рис. 124, I), введению разгружающих выточек и шеек (рис. 124, II—IV) на участках перехода от резьбы к гладкой части стержня, введению разгружающих выточек на корпусе (рис. 124, V), погружению резьбового соединения в корпус (рис. 124, VI). Наиболее действенный, но не всегда применимый по габаритным условиям способ — увеличение диаметра резьбы (рис. 124, VII).

Способы увеличения сопротивления усталости узла установки шпильки в соединениях, подверженных повышенным циклическим нагрузкам

Во избежание самоотвертывания шпильки устанавливают в корпусе по посадке с натягом, а часто еще дополнительно стопорят.

На рис. 125 показаны некоторые способы стопорения шпилек в корпусе. На рис. 125, I изображен способ стопорения обжимом материала корпуса вокруг шпильки кольцевой оправкой. В конструкции на рис. 125, II стопорение достигается введением в нарезное гнездо вкладки из упругого материала (нейлона и т. п.), создающей натяг в соединении.

Способы стопорения шпилек в корпусе

В конструкции на рис. 125, III натяг в резьбе достигается разделением резьбы шпильки на два пояса, один из которых слегка осажен относительно другого. На рис. 125, IV показана самоконтрящаяся шпилька, в разрезной ввертный конец которой установлен конический стержень (а). На последних стадиях ввертывания конус, упираясь в днище гнезда, разжимает разрезной конец шпильки, создавая натяг в соединении. Самоконтрящаяся шпилька на рис. 125, V предназначена для установки в корпуса из пластичных металлов. Ввертная резьба отделена от гладкого цилиндрического пояска выточкой; при завертывании упорный буртик шпильки, сминая первые витки резьбы, загоняет материал корпуса в выточку, образуя кольцевой замок вокруг шпильки. Тот же эффект постигается приданием упорному буртику конической формы.

При ввертывании шпилек в корпуса из мягких металлов следует учитывать пластическую деформацию металла под упорным буртиком шпильки, сопровождающуюся вспучиванием металла и образованием вокруг шпильки кольцевого валика (рис. 126, I). Для устранения этого явления и обеспечения плотного прилегания стягиваемых поверхностей нарезное гнездо корпуса снабжают фаской (рис. 126, II) или выточкой (рис. 126, III). Иногда фаски делают одновременно в корпусе и притягиваемой детали (рис. 126, IV).

Способы устранения выдавливания материала при завертывании шпилек

При ввертывании шпилек (особенно по посадке с натягом) в глухие нарезные гнезда следует учитывать, что в замкнутом пространстве гнезда воздух сжимается. Это явление может оказаться опасным, если учесть, что удельный объем воздуха резко возрастает от нагрева при сжатии. Известны случаи, когда бобышки гнезд разрывались под давлением сжатого в гнезде воздуха.

В целях устранения этого явления в бобышках выполняют отверстия для выхода воздуха (рис. 127, I, II). Иногда воздух выходит через канавки (рис. 127, III) или отверстия в теле шпильки (рис. 127, IV) (при коротких шпильках). Применение последних двух способов (рис. 127, III, IV) нежелательно, так как они ослабляют шпильки.

Способы предотвращения сжатия воздуха в глубоких отверстиях под шпильки

Иногда увеличивают объем остающегося после завертывания шпильки глухого пространства изменением глубины нарезного отверстия или с помощью выборок в торце шпильки (рис. 127, V). Объем определяют с учетом термодинамических законов так, чтобы при завертывании не возникали опасные давления.

В корпусах из мягких металлов шпильки устанавливают на промежуточных нарезных втулках (футорках) (рис. 128, I и II), которые изготовляют из стали (реже из бронзы) и ввертывают в корпус, как правило, по посадке с натягом. На рис. 128, III, IV показаны футорки с упругими «воротниками», позволяющие обеспечить равномерное распределение нагрузки между витками резьбы шпильки. На рис. 128, V дан пример стопорения футорки в корпусе. Разрезной конец футорки разжимается в гнезде коническим хвостовиком шпильки, упирающимся в зегер, введенный во внутреннюю резьбу футорки.

Установка шпилек на футорках

На рис. 128, VI изображен способ одновременного стопорения футорки и шпильки. Разрезные концы футорки после нарезания внутренней резьбы подгибают к центру, а затем нарезают наружную резьбу. При завертывании конец шпильки, надвигаясь на коническую часть резьбы, разжимает разрезные концы, благодаря чему создается натяг как во внутренней, так и во внешней резьбе футорки.

На рис. 128, VII представлена самоврезающаяся футорка для установки в корпусах из мягких материалов (в том числе из пластиков). В конструкции на рис. 128, VIII футорке придан вид витой пружины ромбического профиля; витки заходят одновременно во впадины резьбы в корпусе и на шпильки. Эта конструкция позволяет равномерно распределить нагрузку между витками резьбы.

В некоторых случаях требуется ввести жесткую поперечную связь между корпусом и притягиваемой деталью, например, для восприятия действующих на соединение сдвигающих сил или для точной фиксации притягиваемой детали относительно корпуса. Помимо известного способа фиксации с помощью установочных (контрольных) штифтов, применяют способ фиксации установочными элементами, включенными в конструкцию шпильки. Эти элементы могут быть выполнены на шпильках в виде центрирующих поясков, входящих в точно обработанные гнезда в корпусе и в притягиваемой детали (рис. 129, I, II).

При этом способе трудная задача — одновременное завертывание шпильки в корпус и посадка центрирующего пояска в корпус — обычно решается применением посадок с зазором для ввертного конца шпильки. Лучше конструкция, при которой центрирующий элемент выполнен отдельно в виде втулки, устанавливаемой концентрично со шпилькой (рис. 129, III, IV).

Шпильки с установочными элементами

На рис. 129, V, VI показаны случаи одновременной фиксации двух притягиваемых деталей относительно друг друга и относительно корпуса.

Соединения на шпильках, как и всякие резьбовые соединения, подвергают при сборке предварительной затяжке, влияющей па работоспособность и герметичность узла. Силу предварительной затяжки определяют расчетом или экспериментально. Она зависит от материала стягиваемых деталей, соотношения податливости шпильки и стягиваемых деталей, условий работы стыка, требуемой степени его герметичности и, наконец, от рабочей температуры соединения.

В ответственных соединениях силу предварительной затяжки строго контролируют. Затяжку производят динамометрическими ключами. Регламентируют также порядок затяжки отдельных шпилек в многошпилечных соединениях; затяжку обычно производят в два приема (предварительно и окончательно) с соблюдением в каждом случае определьного порядка затяжки.

При затяжке длинных податливых шпилек возникает опасность скручивания их моментом сил трения в резьбе. При этом в теле шпильки возникают нежелательные, иногда значительные напряжения, причем динамометрическим ключом будет регистрироваться момент, скручивающий шпильку, а не сила затяжки.

При стопорении гаек «на корпус» следует учитывать еще одно явление: шпилька, скрученная при затяжке, с течением времени в результате вибраций, пульсации нагрузки и т. д. «отдает», ввертываясь в резьбу гайки, вследствие чего первоначальная сила затяжки меняется.

Устройства, предупреждающие скручивание шпилек при затяжке

У длинных податливых шпилек предусматривают средства, предупреждающие скручивание при затяжке: навертный конец шпильки снабжают пазом, четырехгранником, шестигранником и т. д., за которые держат шпильку при затяжке (рис. 130, I—IV). Сборка соединения при этом усложняется. Способ, при котором навертный конец шпильки постоянно зафиксирован от проворота шайбой (а) (рис. 131), в свою очередь, зафиксированной «на корпус», совершеннее (но конструктивно сложнее).

Способ предупреждения скручивания шпильки при затяжке

Концы длинных шпилек после центрирования в корпусе часто отклоняются от своего номинального положения (иногда настолько, что не представляется возможным надеть на них притягиваемую деталь). Сборщики прибегают в таких случаях к правке шпилек по месту — способу, который никак нельзя рекомендовать, потому что при этом в теле шпильки возникают дополнительные напряжения.

В поисках рационального решения используют несколько путей:

— первый путь — соблюдение строгой перпендикулярности осей нарезных отверстий под шпильки относительно торца корпуса, то же — для отверстий под шпильки в притягиваемой детали; соблюдение строгой прямолинейности шпилек и параллельности среднего диаметра резьбы шпилек относительно оси шпилек;

— второй путь — увеличение податливости шпилек и применение посадок с зазором для резьбовых деталей (с последующим их стопорением каким-нибудь способом).

Делаются попытки центрировать концы шпилек в отверстиях притягиваемой детали с помощью точно обработанных поясков на стержне шпильки, входящих в точно обработанные отверстия в притягиваемой детали (рис. 132, I), с помощью «висячих» гаек, центрированных в детали непосредственно (рис. 132, II), или через подкладную втулку (рис, 132, III).

Способы центрирования навертного конца шпильки в отверстии

Однако эти способы не исключают необходимости центрирования шпильки, а, наоборот, усиливают эту необходимость. Их ценность заключается в том, что они автоматически, без вмешательства сборщика, устанавливают шпильки на их место при надевании притягиваемой детали (или при завертывании гайки). Если упругие деформации шпилек при этом невелики, то указанные способы можно считать приемлемыми, как облегчающие сборку.

Центрирование и уплотнение навертного конца шпильки

На рис. 133 представлена конструкция концевого узла шпильки с комбинированным центрированием и уплотнением завертного конца. Если шпильки устанавливают в отверстиях большого диаметра (рис. 134, I), то необходимо принять меры против «шатания» шпилек при затяжке. Способы центрирования концов шпилек в этом случае показаны на рис. 134, II—IV.

Способы центрирования концов шпилек

Как и для крепежных деталей всех видов, в тяжелонагруженных шпилечных соединениях целесообразно устанавливать навертные гайки на сферических опорных поверхностях (рис. 135, IIV), обеспечивающих самоустановку гаек и уменьшающих изгиб стержня шпильки.

Установка навертных гаек на сферических опорных поверхностях