Способы упрочнения деталей, материалов

Способы упрочнения деталей

 

Способы упрочнения деталей, материалов.

Действенным средством снижения массы является повышение прочности материалов. В отличие от способа увеличения напряжений путем снижения фактического запаса прочности, сопряженного с риском ослабления детали, надежность в данном случае не уменьшается (если сохраняется запас прочности). Другое отличие заключается в том, что этот способ применим ко всем деталям без исключения, тогда как первый способ охватывает только расчетные детали.

Основные способы упрочнения материалов следующие:

  • горячая обработка давлением;
  • легирование;
  • упрочняющая термическая и химико-термическая обработка;
  • обработка методами холодной пластической деформации.

При горячей обработке давлением упрочнение происходит в результате превращения рыхлой структуры слитка в уплотненную структуру с ориентированным направлением кристаллитов. Пустоты между кристаллитами уковываются и завариваются, прослойки примесей по стыкам кристаллитов дробятся и под действием высокой температуры и давления растворяются в металле.

Наибольшее значение для прочности имеет процесс рекристаллизации, протекающий при остывании металла в определенном интервале температур (для сталей 450—700°С). Из обломков кристаллитов, разрушенных в процессе пластической деформации, возникают новые мелкие зерна. При росте рекристаллизованных зерен примеси остаются в растворенном состоянии в кристаллитах. Для ковкого металла характерна структура, состоящая из мелких округлых зерен, хорошо связанных друг с другом, что обусловливает его повышенную прочность и вязкость.

Кованым и особенно прокатанным металлам свойственна анизотропия механических свойств в направлениях вдоль и поперек волокон.

Особенно резко влияет направление волокон на вязкость (рис. 77).

Механические показатели в зависимости от направления волокон

Направление волокон в кованых и штампованных деталях должно быть согласовано с конфигурацией деталей и направлением действия рабочих нагрузок. Штампованные коленчатые валы (рис. 78, б) и другие фасонные детали (рис. 78, г) с волокнами, следующими контуру, значительно прочнее деталей, изготовленных из сортового проката с перерезкой волокон (рис. 78, а, в).

Расположение волокон

Горячее накатывание зубьев шестерен (с последующим холодным калиброванием) обеспечивает правильное направление волокон относительно действующих на зуб нагрузок (рис. 78, д, e). Повышенной прочностью обладает накатанная резьба (рис. 78, ж, з).

Главное назначение легирования — повышение прочности с дифференцированным улучшением частных характеристик: вязкости, пластичности, упругости, жаропрочности, хладостойкости, сопротивления износу, коррозионной стойкости и др. Присадка некоторых элементов (Ni и особенно микроприсадка В) увеличивает прокаливаемость сталей, что позволяет получать повышенные механические свойства по всему сечению детали. Для получения высоких механических качеств легирование должно быть дополнено термообработкой.

В табл. 8 приведены сравнительные (средние) характеристики легированных и углеродистых сталей.

Прочностные характеристики легированных и углеродистых сталей при оптимальной термообработке

Упрочняющая термическая обработка (закалка с высоким, средним и низким отпуском, изотермическая закалка) вызывает образование неравновесных структур с повышенной плотностью дислокаций и сильно деформированной атомно-кристаллической решеткой (сорбит, троостит, мартенсит, бейнит). Регулируя режимы термообработки, можно получать стали с различным содержанием этих структур, размерами и формой зерен и соответственно с различными механическими свойствами. Для конструкционных сталей чаще всего применяют улучшение (закалка с высоким отпуском на сорбит), обеспечивающее наиболее благоприятное сочетание прочности, вязкости и пластичности.

Закалка с индукционным нагревом поверхностного слоя ТВЧ помимо технологических преимуществ (экономичность, высокая производительность) дает значительный упрочняющий эффект, обязанный возникновению в закаленном поверхностном слое остаточных напряжений сжатия.

Химико-термическая обработка заключается в насыщении поверхностного слоя углеродом (цементация) или азотом (азотирование) с образованием (в последнем случае) нитридов железа и легирующих элементов. При комплексных процессах (цианирование, нитроцементация) поверхность насыщается одновременно углеродом и азотом с образованием карбидов и карбонитридов. Эти виды химико-термической обработки придают поверхности высокую твердость и износостойкость. Вместе с тем они увеличивают прочность (особенно в условиях циклической нагрузки) благодаря образованию в поверхностном слое напряжений сжатия.

Разновидностью химико-термической обработки является термодиффузионное поверхностное легирование (насыщение поверхностного слоя атомами легирующих элементов), которое применяют для повышения прочности и твердости, а также придания поверхности особых свойств (табл. 9).

Процесс Сущность процесса Технология процесса Назначение
Диффузионное хромирование Образование в поверхностном слое карбидов и α-твердых растворов Cr в железе Выдержка в среде летучих хлоридов хрома: CrСl2; CrСl3 (газовое хромирование) при 800—1200 °С (5—6 ч) Повышение твердости (HV 1200—1500) и термостойкости
Титанирование Образование в поверхностном слое α-твердых растворов Ti, карбидов титана TiC и интерметаллидов типа Fe2Ti  Выдержка при 1100—1200°С в смеси порошков ферротитана (80%) и хлористого аммония (6—8 ч)  Повышение твердости (HV 1600—2000), увеличение коррозие- и эрозиостойкости 
Бериллизания  Образование в поверхностном слое α-твердых растворов Be и бериллидов  Выдержка при 900—1100°С в смеси 20% Be, 75% BeO и 5% MgCl2 (4—8 ч)  Повышение твердости (HV 1100—1200), увеличение коррозиестойкости
Борирование Образование в поверхностном слое α-твердых растворов В и боридов Fe   Выдержка при 900—1100° С в смеси порошков карбида бора В4С и буры Na2B4O7 (5—6 ч) Повышение твердости (HV 1500—1800) и термостойкости
Сульфидирование Образование в поверхностном слое сульфидов Fe  Выдержка в расплаве сернокислых солей при 550—600°С (2—4 ч) Повышение износостойкости, придание противозадирных свойств, повышение стойкости против сваривания 
Силидирование  Образование в поверхностном слое α-твердых растворов Si и силицидов Fe  Выдержка в атмосфере моносилана SiH4 с газами-разбавителями при 1000° С (6—10 ч) Повышение износостойкости, увеличение горячей коррозиестойкости 
Семенирование  Образование в поверхностном слое α-твердых растворов Se и селенидов Обработка 20%-ным раствором селенистой кислоты H2SeO3 с добавкой небольшого количества хромпика Повышение износостойкости, придание противозадирных свойств 
Алитирование Отложение на поверхности кристаллической пленки Аl2О3. Образование в поверхностном слое α-твердых растворов Аl и алюминидов   Выдержка в смеси порошков ферроалюминия и Аl2O3 при 900—1000°С (6—8 ч) Повышение горячей коррозиестойкости 

Разработаны процессы комплексного диффузионного легирования: хромалитирование (насыщение Сr и Аl), сульфоцианирование (S, С и N2), бороцианирование (В, С и N2), бороалитирование (В и Аl), хромомарганцевирование (Cr и Мn) и др.