Призматические и профильные соединения для передачи крутящего момента.
В призматических соединениях крутящий момент передается напряжениями смятия на плоских поверхностях вала — лысках и гранях (рис. 616).
В этих соединениях нет выступающих элементов, вызывающих концентрацию напряжений. Однако значительные скачки напряжений возникают на участках перехода несущих плоских поверхностей в цилиндрическую поверхность вала.
Силы, передающие крутящий момент направлены перпендикулярно к граням и действуют на небольшом плече относительно центра вала. Вследствие этого на краях граней возникают повышенные напряжения смятия, возрастающие с увеличением числа граней, т. е. по мере приближения многогранника к окружности.
Примем, что напряжения смятия распределяются на гранях по закону треугольника (рис. 617).
Передаваемый соединением крутящий момент равен произведению площади треугольника 0,5·S·σmax на плечо (2/3)·S равнодействующей сил смятия и длину соединения L:
где z — число граней; [σ] — допустимое напряжение смятия; S — ширина рабочей площадки, зависящая от числа граней и угла ϕ цилиндрических участков вала; L — рабочая длина соединения.
Положим, что суммарный угол zϕ (рис. 616) цилиндрических участков для каждого из рассматриваемых валов одинаков и равен 90°, т. е. ϕ = 90°/z. Для валов с лысками ширину граней принимаем равной ширине граней у квадратного вала.
Радиус окружности, вписанной в многоугольник
Радиус описанной окружности
Средний радиус
откуда
Подставляя это значение S в формулу (163), получаем
При
проведенное напряжение
На рис. 616 показаны величины σ0max/σ0, где σ0 — напряжение смятия в эвольвентных шлицах с углом профиля α0 = 30° (σ0 = 0,8).
Как видно, напряжения смятия в призматических валах значительно выше, чем в шлицах эвольвентного профиля (для наиболее выгодного трехгранного вала — в 5—6 раз; для валов с 4—8 гранями — в 8—17,5 раза; для валов с лысками — в 16—32 раза), поэтому призматические валы применяют в малонагруженных соединениях (например, для передачи крутящего момента насадным рычагам и рукояткам).
Насадные детали центрируют на валах с лысками — по цилиндрической поверхности на многогранных валах — по граням. Для повышения точности центрирования и увеличения равномерности распределения нагрузки грани шлифуют.
Отверстия в насадных деталях обрабатывают протягиванием.
Призматические соединения применяют преимущественно в концевых установках. Затягивать детали на ступенчатые участки m перехода граней в цилиндрическую часть вала (рис. 618, а) не рекомендуется (трудно достичь расположения упорных поверхностей в одной плоскости).
При затяжке на упорные буртики (вид б) грани не доводят на 1—3 мм до буртика, а остающийся цилиндрический поясок перекрывают кольцевой выточкой n в ступице.
Канавки q (вид в) для выхода шлифовального круга с внутренним диаметром d, несколько меньшим диаметра окружности, вписанной в многогранник, сильно ослабляют вал. Например, для четырехгранника момент сопротивления кручению в сечении по канавке приблизительно в 2 раза меньше, чем в сечении по неослабленному валу (предполагается, что диаметр вала равен наружному диаметру многогранника). Кроме того, на участке расположения канавки возникает значительная концентрация напряжений.
В конструкции без канавки, с перекрытием участков выхода круга кольцевой выточкой в ступице (вид г) ослабление несколько меньше, но все же напряжение кручения в сечении А—А призматической части вала примерно в 1,5 раза больше, чем в смежной цилиндрической.
Для достижения равнопрочности на кручение необходимо, чтобы диаметр окружности, вписанной в многогранник, был равен диаметру вала, что приводит к значительному увеличению радиальных размеров соединения, особенно у валов с малым числом граней (три-четыре).
По общей схеме к призматическим соединениям близки профильные соединения, иначе — К-соединения (рис. 619), рабочие поверхности которых образованы циклоидальными кривыми, что позволяет обрабатывать их шлифованием с помощью эпициклических или гипоциклических шлифовальных механизмов.
Преимуществом профильных соединений является возможность точной обработки отверстий в ступицах, термообработанных до высокой твердости.
Напряжения смятия в профильных соединениях с выпуклыми поверхностями выше, чем у призматических валов аналогичной формы, вследствие менее благоприятного распределения (уменьшение плеча сил по мере скругления профиля). Следовательно, несущая способность профильных соединений при одинаковых напряжениях смятия ниже, чем призматических, и ниже, чем шлицевых.
Благоприятнее распределение сил у профилей с вогнутыми поверхностями. Крестообразные соединения подобного типа — трефные соединения (рис. 620) — до сих пор применяют в валах прокатных станов.
Представляя собой по существу крупные шлицы трапецеидального профиля, они по прочности на изгиб и смятие равноценны последним. Однако в отличие от шлицевых соединений у них ослаблено сопротивление кручению.