Соединения с натягом

Соединения с натягом

Соединения с натягом применяют для неразборных или редко разбираемых сопряжений. Сопротивление взаимному смещению деталей в этих соединениях создается и поддерживается силами упругой деформации сжатия (в охватываемой детали) и растяжения (в охватывающей детали), пропорциональными величине натяга в соединении.

Посадки с натягом. ЕСДП устанавливает следующие посадки с натягом: от р до z (в системе отверстия) и от Р до Z (в системе вала).

На рис. 517, а приведены средние значения натягов Δср в функции диаметра вала d для различных посадок, а на рис. 517, б — средине значения относительных натягов Δср/d.

Соединения с натягом

Относительные натяги резко возрастают в области малых диаметров. Это заставляет особенно осторожно подходить к расчету соединений малого диаметра, так как прочность деталей соединений зависит прежде всего от относительного натяга.

Несущая способность. Наибольшая осевая сила, которую может выдержать соединение,

Наибольшая осевая сила, которую может выдержать соединение

где k — давление на посадочной поверхности, МПа; F = πdl — площадь посадочной поверхности, мм2 (d и l — диаметр и длина посадочной поверхности); f — коэффициент трения между сопрягающимися поверхностями (для сталей и чугунов в среднем f = 0,10—0,15).

Наибольший крутящий момент, передаваемый соединением,

Наибольший крутящий момент, передаваемый соединением

Давление k на посадочных поверхностях зависит от натяга и толщины стенок охватывающей и охватываемой деталей. Согласно формуле Ламе

Soed s natjagom 4

где Δ/d — относительный диаметральный натяг; θ — коэффициент; Δ — в мм; d — в мм;

Soed s natjagom 5

здесь E1, E2 и μ1, μ2 — соответственно модули нормальной упругости и коэффициенты Пуассона материалов охватываемой и охватывающей деталей; с1 и с2 — коэффициенты;

Soed s natjagom 6

причем d1 и d2 — соответственно внутренний диаметр схватываемой детали и наружный диаметр охватывающей детали (рис. 518).

Параметры соединения с натягом

Следовательно,

Soed s natjagom 8

Давление k, а, следовательно, и несущая способность соединения пропорциональны относительному диаметральному натягу Δ/d, возрастают с увеличением модуля упругости материалов и уменьшаются с увеличением с1 и с2, т. е. с увеличением тонкостенности.

Решение Ламе (соединение бесконечной длины) предполагает равномерное распределение давления по длине соединения и дает средние значения k. В соединениях конечной длины, как показывает точный расчет (Парсонс), на кромках возникают скачки давления, пропорциональные жесткости втулки и величине k. Максимальное давление на кромках превышает номинальное давление k в 2—3,5 раза (рис. 519).

Распределение давления по длине соединения

Скачки можно практически устранить и сделать давление приблизительно постоянным с помощью разгружающих фасок на втулке, утонения втулки к краям и бомбиниронания вала.

Назовем a1 = d1/d и а2 = d/d2 относительной тонкостенностью соответственно охватываемой и охватывающей деталей. Значения а1 = а2 = 0 соответствуют случаю массивных охватываемой и охватывающей деталей; значения а1 и а2, близкие к 1, — случаю тонкостенных деталей.

Коэффициенты с1 и с2 можно представить в общем виде следующим образом:

Soed s natjagom 10

Это соотношение представлено графически на рис. 520.

Soed s natjagom 11

Напряжение сжатия в охватываемой детали максимально на внутренней поверхности:

Напряжение сжатия в охватываемой детали максимально на внутренней поверхности

Напряжение растяжения в охватывающей детали максимально на внутренней поверхности:

Напряжение растяжения в охватывающей детали максимально на внутренней поверхности

Уменьшение внутреннего диаметра охватываемой детали

Уменьшение внутреннего диаметра охватываемой детали

Увеличение наружного диаметра охватывающей детали

Увеличение наружного диаметра охватывающей детали

Максимально допустимое давление на посадочной поверхности определяется прочностью на смятие kmaх = σсм, где σсм — предел прочности на смятие наиболее слабого из двух сопряженных материалов. Для улучшенных сталей можно принимать σсм = 200—250 МПа; для серых чугунов σсм = 20—50 МПа и алюминиевых сплавов σсм = 10—20 МПа.

Чаще всего несущую способность соединении лимитируют не напряжения смятия на контактных поверхностях, а напряжения растяжения в охватывающей детали или сжатия в охватываемой.

Если охватывающая и охватываемая детали выполнены из одинакового материала (Е1 = Е2 = Е; μ1 = μ2 = μ), то тогда θ = Е/(с1 + с2) и согласно формулам (119)—(121)

Soed s natjagom 16

Soed s natjagom 16 1

На рис. 521, а приведено в функции а1 и а2 относительное давление k0 = 1/(c1 + c2), представляющее собой величину давления k при ЕΔ/d = 1.

Soed s natjagom 17

Давление (а, следовательно, и несущая способность соединения) максимально при а1 = а2 = 0, слабо снижается при увеличении а1 и а2 до ~0,5 (заштрихованный участок), а с дальнейшим увеличением а1 и а2 (тонкостенные детали) резко падает, стремясь к нулю при а1 = а2 = 1.

Снижение давления с уменьшением толщины стенок охватываемой и охватывающей деталей можно компенсировать увеличением диаметра и длины посадочной поверхности. Если, как это обычно бывает, длина соединения пропорциональна диаметру, т. е. l = n·d (n — коэффициент пропорциональности), то согласно формулам (113) и (114) Poc = k·f·n·d2 и Мкр = 0,5k·f·n·d3. Следовательно, сопротивление осевому сдвигу пропорционально квадрату, а кручение — кубу диаметра соединения. Таким образом, увеличение диаметра представляет очень эффективный способ увеличения несущей способности и снижения напряжении в охватывающей и охватываемой деталях.

Согласно формулам (123) и (124) относительные напряжения (напряжения при EΔ/d = 1)

Soed s natjagom 18

Эти соотношения приведены на рис. 521, б. Из графика можно сделать следующие выводы:

- напряжения σ01 в охватываемой детали (жирные линии) максимальны (σ01 = 1) при массивной охватывающей детали (а2 = 0), снижаются с уменьшением толщины ее стенок (a2 à 1) и возрастают с уменьшением толщины стенок охватываемой детали (a1 à 1);

- напряжения σ02 в охватывающей детали (тонкие линии) максимальны (σ02 = 1) при массивной охватываемой детали (a1 = 0), снижаются с уменьшением толщины ее стенок (a1 à 1) и возрастают с уменьшением толщины стенок охватывающей детали (a2 à 1).

Называя охватываемую деталь валом, а охватывающую корпусом, можно сформулировать следующие практические правила:

- для увеличения прочности вала целесообразно увеличивать толщину его стенок и уменьшать толщину стенок корпуса (массивный вал — тонкостенный корпус);

- для увеличения прочности корпуса целесообразно увеличивать толщину его стенок и уменьшать толщину стенок вала (массивный корпус — тонкостенный вал).

Существенное снижение напряжении происходит только при увеличении а1 и а2 свыше 0,5. При меньших значениях а1 и а2 (заштрихованный участок) напряжения мало отличаются от напряжений в массивных деталях.

Коэффициент трения. Несущая способность прямо пропорциональна коэффициенту трения на посадочной поверхности.

Коэффициент трения зависит от давления на контактных поверхностях, размеров и профиля микронеровностей, материала и состояния сопрягающихся поверхностей (наличие смазки), а также способа сборки (соединение под прессом, с нагревом или охлаждением деталей).

Коэффициент трения возрастает с увеличением шероховатости поверхностей и снижается с повышением давления (рис. 522), так что иной раз целесообразны меньшие натяги с выгодой для прочности вала и втулки.

Коэффициент трения в зависимости от шероховатости поверхности

При сборке с нагревом или охлаждением деталей коэффициент трения в 1,3—2,5 раза выше, чем при сборке под прессом. Коэффициент трения можно значительно повысить нанесением гальванических покрытии. В зависимости от перечисленных факторов коэффициент трения f = 0,06—0,25, а иногда и выше. Ценность расчета точности состоит в том, что он позволяет определить влияние геометрических параметров и жесткости элементов соединения на несущую способность и прочность, а также наметить рациональные пути упрочнения. При расчетах придерживаются значений f = 0,10—0,15, относя возможное повышение коэффициента сверх этих значений в запас прочности.

Влияние качества поверхностей. Несущая способность соединения с натягом зависит от обработки сопрягающихся поверхностей.

В измеряемые диаметры отверстия и вала входит высота микронеровностей, которые при запрессовке сминаются. Если высота микронеровностей соизмерима с натягом, фактический натяг в соединении значительно уменьшается.

Soed s natjagom 20

На рис. 523 приведены натяги Δmin, Δср и Δmax (штриховые линии) при посадке H7/r6 или H7/s6 для различных диаметров валов, а также нанесены суммарные высоты неровностей вала и отверстия (сплошные линии) при обработке по 4—9-му классу шероховатости (Ra = 0,2—6,3 мкм). Для соединений малого диаметра (менее 30—40 мм) обработка ниже 9-го класса (Ra = 0,2 мкм) исключается, так как суммарная высота микронеровностей становится близкой к величине Δmin. Натяг в таких соединениях может значительно уменьшиться или исчезнуть в результате смятия микронеровностей.

Соединения с диаметром более 50 мм, а также соединения с большим натягом можно обрабатывать несколько грубее. Практически поверхности валов в соединениях с натягом среднего размера обрабатывают по 8—10-му классу (Ra = 0,1—0,4 мкм), а отверстий — по 7—9-му классу шероховатости (Ra = 0,2—0,8 мкм).

Микронеровности в известной мере положительно влияют на прочность соединения, действуя наподобие шипов, увеличивающих связь между сопрягающимися поверхностями. Как установлено опытами, повышение класса шероховатости свыше 11-го (Ra = 0,05 мкм) снижает несущую способность соединении вследствие уменьшения коэффициента трении на поверхностях контакта.

В формулы (119)—(121) входит действительный натяг. Поэтому при расчете заданный номинальный натяг Δном следует уменьшить на величину смятия микронеровностей

Soed s natjagom 21

где Rz1 и Rz2 — высоты микронеровностей поверхности соответственно вала и отверстия, мкм; ϕ — коэффициент смятия.

Величина смятии микронеровностей зависит от натяга в соединении, высоты неровностей, их формы, профили и плотности распределения, твердости и прочности материала сопрягающихся поверхностей, соотношения между твердостью поверхностей охватывающей и охватываемой деталей, а также от условий сборки. При сборке под прессом неровности последовательно подвергаются срезу при продольном перемещении и сминаются гораздо больше, чем при сборке с нагревом или охлаждением деталей (когда неровности смыкаются в радиальном направлении).

Фактическая, устанавливающаяся после некоторого периода эксплуатации величина смятия, определяющая эксплуатационную надежность соединения, зависит от нагрузок, действующих на соединение. Высота неровностей уменьшается после каждой разборки-сборки, стабилизируясь на определенном уровне после трех-четырех разборок.

Учесть все эти многообразные факторы невозможно. В качестве первого приближения при расчете принимают, что смятие микронеровностей составляет 0,5—0,6 первоначальной средней высоты микронеровностей. Влияние последующей эксплуатации учитывают коэффициентом запаса, который при расчете принимают равным 1,5—3.

При ϕ = 0,5Δ' = Rz1 + Rz2. Введем величину Δном —Δ' в формулу (115):

Soed s natjagom 22

Если при расчете определяют необходимый номинальный натяг, то к найденному натягу следует прибавить величину смятия микронеровностей: Δном = Δpaсч + Rz1 + Rz2.

По номинальному натягу, определенному таким образом, подбирают соответствующую посадку по ЕСДП.

Поправка на смятие микронеровностей имеет существенную величину для соединений малого диаметра. Для диаметров более 50 мм при обработке по 5-му классу шероховатости и выше поправки не превышает 10% (рис. 524), и ею можно пренебрегать, особенно если сборка производится с нагревом или охлаждением деталей.

Поправки на смятие микронеровностей в зависимости от диаметра соединения

Влияние тепловых деформаций. В соединениях, подвергающихся нагреву, следует учитывать влияние температуры на посадку. Если охватывающая деталь изготовлена из материала с более высоким коэффициентом линейного расширения или нагревается при работе больше, чем охватываемая, то при нагреве первоначальный (холодный) натяг уменьшается. Напротив, если охватываемая деталь изготовлена из материала с более высоким коэффициентом линейного расширения или нагревается при работе больше, чем охватывающая, то первоначальный натяг в соединении при нагреве увеличивается.

Если соединение при работе подвергается нагреву, то в формулы (119)—(121) следует внести температурный натяг (с его знаком)

Soed s natjagom 28

где α1 и α2 — коэффициенты линейного расширения материала соответственно охватываемой и охватывающей деталей; Δt1 и Δt2 — увеличение температуры при нагреве соответственно охватываемой и охватывающей деталей.

Формула (115) при этом приобретает вид

Soed s natjagom 24

Первоначальный относительный натяг, необходимый для поддержания заданного давления k при нагреве:

Soed s natjagom 25

При посадке на валы быстроходных роторов следует еще учитывать расширение ступицы под действием центробежных сил и соответственно увеличивать первоначальный натяг.